

Non-ambient attachment for XRD

HTK 2000N – high-temperature chamber

Benefits

- In situ powder X-ray diffraction studies for temperatures up to 2300 °C
- Allows for extremely fast heating rates
- Chamber design optimized for a minimum temperature gradient along the heating strip and maximum position stability of the sample
- Integrated alignment slits allow exact positioning of the strip surface even at high temperatures
- A choice of heating strips depending on experimental requirements
- Easy access to the heating strip for straightforward sample preparation

Application example

Formation of Mg-Al Spinel from mixture of Corundum and Periclase

HTK 2000N chamber

Features

25-2300 °C (tungsten strip) 25-1600 °C (platinum strip) 25-1500 °C (tantalum strip) Max. heating rate: 900 °C/min Recommended heating rate: 600 °C/min

Direct heating

Air

Vacuum 10⁻⁴ mbar Inert gases

Atmospheres

Flat plate reflection geometry.

Platinum

air, vacuum, inert gas

Tungsten

vacuum

Tantalum

vacuum

Conclusion

The HTK 2000N high-temperature chamber is an ideal choice for *in situ* studies of phase transformations and changes of structural properties when extremely high temperatures are required.

Heating strips