ADVANCED BENCH-TOP CAPILLARY RHEOMETERS FOR RESEARCH, PRODUCT DEVELOPMENT AND QUALITY CONTROL

The RH2000 series of bench top capillary rheometers are compact systems capable of most testing requirements encountered in capillary rheometry.

The series is available in both single bore or twin bore configurations, the RH2100 and RH2200 respectively. Both versions incorporate many of the features and attributes found in the floor standing models (Rosand RH7&10).

A new digital drive system gives the RH2000 series unsurpassed speed control, accuracy, and dynamic operating range.

This new hardware is supported by the latest generation of Windows™ based software, Flowmaster™, offering many new experimental possibilities.
KEY FEATURES AND BENEFITS

Rigid frame design

Rigid one-piece cantilever frame design provides extreme mechanical strength and stiffness for a compact bench top unit.

Swivel head design

A unique, safety interlock protected, swivel design means that the actuated part of the rheometer can be moved to one side affording ease of access for cleaning and sample loading.

Bi-modal speed control

Bi-modal digital speed control technology has been developed for the latest generation of capillary rheometers. The technology uses different speed control algorithms suited to high and low speed operation to optimize performance. This gives the rheometer an impressive dynamic range in speed control. In practice, the lower limit is determined only by long experimental times at low shear rates but a dynamic range in speed of in excess of 200,000:1 is available if required. This greatly enhances the system’s flexibility and means that a wider range of shear rates can be covered using any particular die.

Rosand Twin Bore Principle (RH2200 model)

Rosand capillary rheometers were the first to introduce the twin bore measurement principle to the commercial market. Simultaneous measurements can be made on both long and short dies to determine the inlet pressure drop at the die and, therefore, absolute viscosity, using the Bagley method. More commonly, Rosand ‘zero length’ dies are used to directly measure the inlet pressure drop and measure the extensional viscosity using the Cogswell method.

The twin bore technique gives obvious experimental advantages including improved throughput, since both experiments are preheated simultaneously. Alternatively, the software can be configured to run a two material test which allows measurement of the viscosity of two different materials simultaneously.
FLOWMASTER™ SOFTWARE

Continuous development of the Rosand Flowmaster™ software has produced a comprehensive data acquisition and analysis package with a wide range of measurement options and an extensive help system.

Constant shear and extensional tests
Measurement of shear or extensional stress and shear or extensional viscosity as a function of shear rate. Extensional tests are carried out with an orifice die.

Die swell
Measurement of the extrudate diameter close to the die exit. Directly interfaced with the control software and die swell is stored as part of the measurement data file.

Melt fracture/flow instability
Accelerated shear rate ramp with continuous monitoring of the pressure to detect flow instabilities, such as melt fracture which may occur during flow through a capillary die.

Software modules and analysis functions include:
- Constant shear test
- Extensional test
- Manual control
- Flow/no flow
- Non-Newtonian index
- Bagley correction by orifice die and extrapolation methods
- Rabinowitsch correction
- Hagenbach correction for fluid inertia
- Cogswell convergent flow model and extensional viscosity assessment
- Extensive plot and print options
- Data export

Software options
- Wall slip analysis
- Melt fracture/flow instability
- Die swell
- Material degradation/thermal stability
- Low speed degradation
- Eta-0 (Intrinsic Melt Viscosity)
- Stress relaxation
- Low level scripting
OPTIONS

The Rosand RH2000 capillary rheometers can be configured with a variety of options to provide complete measurement solutions across all applications.

High Force
Extends the maximum force (summed over both barrels if applicable) to 20kN.

High Speed
Extends the upper speed limit of the unit to 1200mm/min for high shear rate measurement with no loss in speed sensitivity or available force. The high speed option is fully compatible with the high force option.

Barrel Materials and Dimensions
For aqueous or aggressive materials, stainless steel or Hastelloy barrels are available in place of the standard Nitrided steel version. The wide dynamic range in speed means that the standard 15mm diameter barrel is suitable for the vast majority of testing applications. However, barrels are available with 9.5mm, 12mm, 19mm and 24mm bores as an option.

Low Temperature
For applications that require sub-ambient measurements, a special cooling coil option is available.

Accessories
Several accessories are available to suit particular applications or enhance the testing capability of the base units.

The main accessories are listed below

- Alternative test dies
- Alternative pressure transducers
- Nitrogen purge
- Die and melt cutters
- Laser die swell measurement
APPLICATIONS

• Characterization of polymer or suspension rheology across a range of shear rates and temperatures
• Simulation of extensional viscosity dominated processes such as fibre spinning, blow moulding, film blowing and thermoforming
• Assessment of extrusion behaviour for processes such as injection moulding and hot melt extrusion
• Evaluation of material behaviour at process relevant shear rates such as high speed coating and printing applications
• Detection of polymer instabilities such as melt fracture and thermal degradation
• Measurement of material elasticity and related properties such as die swell
RHEOMETER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Overview Rosand RH2000 - Comprehensive rheological analysis</th>
</tr>
</thead>
</table>
| Number of bores | Single (RH2100)
| | Double (RH2200) |
| Maximum force | 12kN standard (20kN option) |
| Frame stiffness | 100kN |
| Maximum speed | 600mm/min standard (1200mm/min high speed option) |
| Dynamic range in speed | >120000:1 (240000:1 with high speed option) |
| Speed uncertainty | <0.1% |
| Temperature range | Ambient to 400ºC (500ºC option)
| | 5ºC to 200ºC (Low temperature cooling coil option) |
| Temperature control | <±0.1ºC |
| Bore diameter | 15mm standard (9.5, 12, 19 and 24mm bore options) |
| Barrel bore length | 250mm |
| Barrel material | Nitrided steel standard (Hastelloy or stainless steel options) |
| Pressure transducer ranges | 30000, 20000, 10000, 5000, 1500 or 500 psi |
| Pressure transducer accuracy | <0.5% |
| Dies | Tungsten carbide, precision ±5µm |
| Die diameter | 0.5 to 2mm (in 0.5mm increments) and 3mm standard
| | (other diameters, including fine bore dies, available to special order) |
| Height | Rheometer 1.1m
| | Electronics box 0.65m |
| Width | Rheometer 0.55m (without accessories)
| | Electronics box 0.34m |
| Depth | Rheometer 0.65m (without accessories)
| | Electronics box 0.53m |
| Weight | Rheometer 120kg (without accessories)
| | Electronics box 30kg |
| Power requirements | Single phase AC 230V 50Hz 16A |

Rheological support made easy.

Every Rosand RH2000 from Malvern is backed with the technical and sales support of Malvern Instruments, the only material characterization company with the resources and equipment to measure particle size and shape, zeta potential and molecular weight as well as the expertise to advise on how these parameters influence rheological properties.