The fabrication of core-shell nanoparticles, hollow-shell, and other layered colloidal nanoparticle materials has been of high interest due to their controlled architectures and surface functionality. They have been used as biosensors, theranostic and drug delivery vehicles, light emitting and solid state materials, etc. By coupling nanoparticles with various shell organic polymer materials, e.g. dendrimers, copolymers, and grafted polymers, it is possible to create high peripheral functionality and a host of gradient properties controlled by the size, shape, and generational growth of the layers. 

This talk will focus on the class of hybrid nanoparticle materials with interesting gradient properties produced by coupling a solid-state nanocrystal or nanoparticle (metal, semiconductor, etc.) with the properties of organic polymers and dendrimers. The analytical characterization of the synthesis and the fabrication of the solid state films, including the use of advanced multi-detector GPC, are highlighted. The key is the use of smart polymer characterization methods and surface sensitive analytical spectroscopic and microscopic tools to elucidate properties.