Definition und Messmethoden der Partikelgrößenverteilung
Inhaltsverzeichnis
- Was ist eine Partikelgrößenverteilung?
- Methoden zur Messung der Partikelgrößenverteilung
- Arten der Partikeldurchmesser-Verteilungen
- Anzeigemethoden für Partikeldurchmesser-Verteilungen
- Statistik der Verteilungen
- Definition von Partikelgröße und Partikelform
- Seminarvideo zur laserbeugungsbasierten Messung der Partikeldurchmesser-Verteilung
- Einführung in Partikelgrößenverteilungs-Analyzer (LD, DLS)
Was ist eine Partikelgrößenverteilung?
Eine Partikelgrößenverteilung beschreibt die Verteilung der Größen von Partikeln und wird normalerweise als Histogramm dargestellt, bei dem der Durchmesser der Partikel auf der x-Achse und die Häufigkeit auf der y-Achse aufgetragen werden.

Bitte aktivieren Sie das Feld „Ich möchte den Newsletter mit Seminarinformationen usw. erhalten“.
Referenzierte Artikel
Methoden zur Messung der Partikelgrößenverteilung
Es gibt verschiedene Methoden zur Messung der Partikelgrößenverteilung.
Technologie | Beschreibung | Hauptvorteile | Prinzip | Komponenten des Messgeräts |
---|---|---|---|---|
Laserbeugungs-Partikelgrößenmessung | Technologie zur Messung der Partikelgrößen von Materialien mit Durchmessern von einigen hundert Nanometern bis zu einigen Millimetern | • Breites dynamisches Spektrum • Schnelle Messung • Reproduzierbare Ergebnisse • Sofortiges Feedback • Hohe Durchsatzrate • Keine Kalibrierung erforderlich • Anerkannte Technologie (ISO13320) | Messung der Winkeländerung der Streulichtintensität, wenn das Laserlicht durch die Partikel geht, und Berechnung der Partikelgrößenverteilung mit der Mie-Theorie | 1. Optische Bank 2. Probenverteilungseinheit 3. Messsoftware |
Dynamische Lichtstreuung (DLS) | Non-invasive Methode zur Messung des Durchmessers von Partikeln oder Polymeren unter einem Nanometer | • Ideal für Nanomaterialien und Biomaterialien • Messung mit kleinen Probenvolumina möglich • Schnelle Analyse • Non-invasiv | Analyse der Intensitätsänderungen des Streulichts durch die Brownsche Bewegung der Partikel in der Suspension zur Ermittlung der Partikelgröße | 1. Laserquelle 2. Streulichtdetektor 3. Digitaler Korrelation |
Automatische Bildverarbeitung | Hochauflösende Methode zur Charakterisierung von Partikeln mit Durchmessern von etwa 1 Mikron bis zu einigen Millimetern | • Messung von Formunterschieden • Erkennung von Agglomeraten oder unerwünschten Partikeln • Kombinierbar mit anderen Messtechniken | Aufnahme von Einzelpartikelbildern und Analyse der Partikelgröße und -form zur statistisch signifikanten Verteilung | 1. Probenpräsentation und Verteilung 2. Bildaufnahmeoptik 3. Datenanalysesoftware |
Elektrophoretische Lichtstreuung (ELS) | Methode zur Messung der elektrophoretischen Mobilität von Partikeln oder Molekülen zur Berechnung des Zeta-Potentials | • Vergleich von Materialien möglich • Häufige Kombination von DLS und ELS | Geladene Partikel bewegen sich durch ein elektrisches Feld, Geschwindigkeit wird gemessen um das Zeta-Potential zu berechnen | 1. Elektrodzelle 2. Laser-Doppler-System 3. Phasenanalyse-Lichtstreuung (PALS) |
Anzeigemethoden für Partikeldurchmesser-Verteilungen
Partikeldurchmesser-Verteilungen werden in Diagrammen angezeigt, die den Anteil jedes Partikeldurchmessers zeigen. Man erhält unterschiedliche Ergebnisse, je nachdem ob die Anzahl oder das Volumen (Masse) als Grundlage dient. Bei der Anzahl-Grundlage wird die Partikelanzahl angezeigt, während bei der Volumen-Grundlage das Volumen der Partikel dargestellt wird.
Wenn man genau hinsieht, sind Dinge der gleichen Art nur selten exakt gleich groß.
Zum Beispiel gibt es bei einem Sandkorn sowohl große als auch kleine Partikel. Es gibt mehrere statistische Methoden, um diese Größenunterschiede darzustellen.
Arten der Partikeldurchmesser-Verteilungen
Darstellung durch „Verteilungskurven“
Grafiken, die die Streuung in der Größe darstellen, werden als „Verteilungskurven“ bezeichnet. Die zwei häufigsten sind:
- Häufigkeitsverteilungskurve: Zeigt, wie viele Partikel einer bestimmten Größe vorhanden sind
- Kumulative Verteilungskurve: Zeigt, wie viele Partikel unter einer bestimmten Größe vorhanden sind
Solange das zu bewertende Muster nicht völlig monodispers ist (d.h. alle Partikel haben exakt die gleiche Größe), besteht dessen statistische Verteilung aus Partikeln unterschiedlicher Größe.
Häufig spricht man in diesem Kontext von Häufigkeits- oder kumulativen (Untersieb-) Verteilungskurven.
Typen von gewichteten Verteilungen | Definition | Verwendung |
---|---|---|
Anteilsmäßig gewichtete Verteilung | Verteilung, die jeder Partikeleinnahme das gleiche Gewicht verleiht, etwa bei der Bildanalyse | Nützlich, wenn die absolute Partikelanzahl wichtig ist oder eine hohe Auflösung erforderlich ist |
Volumen-/Massegewichtete Verteilung | Verteilung, die mit Techniken wie der Laserbeugung erstellt wird, basierend auf dem Volumen | Der Beitrag jedes Partikels ist proportional zum Volumen, die relative Beteiligung ist proportional zur dritten Potenz des Partikeldurchmessers. Nützlich aus verkaufstechnischer Sicht |
Intensitätsgewichtete Verteilung | Erstellt durch dynamische Lichtstreutechniken, gewichtet nach der Lichtintensität | Der Beitrag jedes Partikels hängt von der Intensität des gestreuten Lichts ab, wobei die Rayleigh-Approximation für sehr kleine Partikel die relative Beteiligung proportional zur sechsten Potenz des Partikeldurchmessers setzt |
Unterschiede in den Grundlagen und Datenumwandlung
Die Anzahl-Grundlagen und Volumen-Grundlagen variieren je nach Messmethode. Für den Vergleich zwischen verschiedenen Grundlagen ist eine Konvertierung erforderlich, wobei es nicht empfohlen wird, Volumendaten aus der Laserbeugung in Anzahldaten umzuwandeln.
Es ist möglich, Partikelgrößendaten von einer Verteilung in eine andere umzuformen, dabei sind jedoch Annahmen über die Partikelform und deren physikalische Eigenschaften notwendig.
Beispielsweise ist es unwahrscheinlich, dass eine mit Bildanalyse und volumenbasierter Gewichtung gemessene Partikelgrößenverteilung genau mit einer durch Laserbeugung erfassten Verteilung übereinstimmt.
Beim Vergleich von Partikelgrößendaten desselben Musters, gemessen mit unterschiedlichen Methoden, ist es wichtig zu berücksichtigen, dass sich die Partikelgrößenergebnisse stark unterscheiden können, abhängig von der Verteilung, die für die Messung und Berichterstellung verwendet wird.
Das wird in folgendem Beispiel klar, das ein Muster mit Partikeln von 5 nm und 50 nm Durchmesser verwendet. In der auf der Anzahl gewichteten Verteilung haben beide Arten von Partikeln gleiches Gewicht, wobei die kleinen 5 nm Partikel hervorgehoben werden.
In der nach Intensität gewichteten Verteilung haben die größeren 50 nm Partikel ein Signal, das eine Million Mal stärker ist. In der volumengewichteten Darstellung erhält man Daten, die zwischen den beiden Gruppen liegen.

Es ist möglich, Partikelgrößendaten von einer Verteilung in eine andere umzuformen, dabei sind jedoch Annahmen über die Partikelform und deren physikalische Eigenschaften notwendig.
Beispielsweise ist es unwahrscheinlich, dass eine mit Bildanalyse und volumenbasierter Gewichtung gemessene Partikelgrößenverteilung genau mit einer durch Laserbeugung erfassten Verteilung übereinstimmt.
Statistik der Verteilungen
“Es gibt drei Arten von Lügen: Lügen, verdammte Lügen und Statistiken.” – Twain, Disraeli
Parameter, die in Berichten zur Partikeldurchmesser-Verteilung verwendet werden
Um die Interpretation von Partikelgrößenverteilungsdaten zu vereinfachen, können verschiedene statistische Parameter berechnet und Berichte erstellt werden. Die Wahl der am besten geeigneten statistischen Parameter für eine Probe hängt vom Verwendungszweck und Vergleichszweck der Daten ab.
Wenn beispielsweise ein Bericht über die am häufigsten vorkommende Partikelgröße in einer zu messenden Probe erstellt werden soll, kann man aus den folgenden Parametern wählen:
Indikator | Beschreibung | Beispiel |
---|---|---|
Mittlere Größe | „Durchmesser in der Mitte“ der Gaußschen Verteilung der Partikelgrößen | – |
Modalgröße | Partikelgröße mit der höchsten Frequenz | Das häufigste Vorkommen in den Daten {1, 2, 2, 3, 4} ist 2 |
Median-Durchmesser | Durchmesser, bei dem eine Probe gleichmäßig in zwei Hälften geteilt wird, bei dem 50% der Partikel größer und 50% kleiner sind | Für die Daten {1, 2, 3, 4, 5} ist der Median 3. Bei {1, 2, 3, 4} ist der Median (2+3) / 2 = 2.5. |
Feret-Durchmesser | Höchster ausgefüllter Kreisdurchmesser für die Messung der Form von Objekten wie Partikeln oder Zellen | – |
Martin-Durchmesser | Durchmesser, der zur Charakterisierung der Form von Partikeln verwendet wird und insbesondere die Unregelmäßigkeiten in der Partikelform berücksichtigt | – |
Wie in der untenstehenden Abbildung zu sehen, stimmen die drei Werte in asymmetrischen Partikelgrößenverteilungen selten überein.

Mittlere Partikelgröße
Aufgrund der unterschiedlichen Methoden zur Erfassung und Analyse der Verteilungsdaten gibt es viele Arten von Mittelwerten. In der Partikelgrößenmessung sind die drei gebräuchlichsten:
Art des Mittelwerts | Symbol | Beschreibung |
---|---|---|
Arithmetischer Mittelwert | D[1, 0] / Xnl | Definition: Wichtig, wenn die Partikelanzahl von Bedeutung ist Verwendung: Berechnung, wenn die Gesamtanzahl der Partikel in einer Probe bekannt ist, beschränkt auf Partikelzählung |
Oberflächenmomentsmittelwert | D[3, 2] / Xsv | Definition: Relevanz, wenn spezifische Oberfläche wichtig ist Verwendung: Berücksichtigt Bioverfügbarkeit, Reaktivität, Löslichkeit und stellt die Existenz von feinen Partikeln in der Verteilung klar dar |
Volumenmoment-Mittelwert | D[4, 3] / Xvm | Definition: Spiegelung des Durchmessers der Partikel, die den größten Teil des Probenvolumens ausmachen Verwendung: Klarstellung der Existenz großer Partikel in der Verteilung, relevant für viele Proben |
Ein Beispiel für den Oberflächenmoment- und Volumenmoment-Mittelwert auf der genannten Verteilung finden Sie unten. Wenn die Messung der groben Partikel, die den Großteil der Probe darstellen, das Ziel ist, ist D[4, 3] am besten geeignet.
Ist hingegen die relative Menge der enthaltenen feinen Partikel wichtiger, sollte D[3, 2] verwendet werden.

Perzentile
Wenn die Partikelgrößenverteilung eines bestimmten Probenvolumens auf einem Durchmesser basiert, bei dem ein definierter Prozentsatz des Probenvolumens unter diesem liegt, spricht man von Perzentilen.
Perzentile werden als XaB definiert und bedeuten:
- X = Parameter, meist der Durchmesser
- D
a = Gewichtungsart der Verteilung (z.B. n für Anzahl, v für Volumen, i für Intensität) - B = Prozentsatz der Probe unterhalb eines bestimmten Durchmessers (z.B. 50%, oft als Dezimalwert 0.5 dargestellt)
Dv50 beschreibt beispielsweise, dass 50% des Probenvolumens eine maximale Partikelgröße beinhalten unterhalb dieses Durchmessers, er wird oft als medianer Durchmesser in Volumeneinheiten bezeichnet.
Wie in der Häufigkeits- und Kumulativanalyse dargestellt, sind Dv10, Dv50 und Dv90 die am häufigsten berichteten Perzentilwerte.

Durch Überwachung dieser drei Parameter kann untersucht werden, ob wesentliche Veränderungen an den Hauptecken der Partikelgrößenverteilung stattfinden oder ob sich Veränderungen an den Extremen der Verteilung abzeichnen.
Dies kann auf das Vorhandensein von sehr feinen Partikeln oder zu großen Partikeln/Agglomeraten zurückzuführen sein, wie in der unten gezeigten Verteilung der Partikelgrößen dargestellt.

Definition von Partikelgröße und Partikelform
Da Partikel komplexe dreidimensionale Objekte sind, muss ihre Beschreibung, ähnlich wie bei der Partikelgrößenmessung, vereinfacht werden, um Messungen und Datenanalysen zu ermöglichen.
Die Messung der Partikelform erfolgt üblicherweise durch Bildverarbeitung mit 2D-Profilprojektionen. Um Partikelformparameter zu bestimmen, sind meist einfache geometrische Berechnungen an diesen Projektionen erforderlich.
Partikelform
Die Gesamtform der Partikel kann durch einfache Parameter wie das Seitenverhältnis bewertet werden. Ein Beispiel wäre die Berechnung des Aspektverhältnisses bei den unten gezeigten Partikeln:
Aspektverhältnis = Breite / Länge

Partikelkontur
Die Konturen eines Partikels liefern Informationen, die über die Erkennung von Partikelagglomeraten hinausgehen, z.B. über die Oberflächenrauheit. Die Berechnung von Partikelkonturparametern erfolgt durch das Konzept der konvexen Hülle.

Hat man die konvexe Hüllenlänge, kann auf Grundlage dieser Länge Schärfe- und Konvexitätsparameter berechnet werden:
- Konvexität = Konvexhüllenumfang / Tatsächlicher Umfang
- Schärfe = Fläche innerhalb des tatsächlichen Umfangs / Fläche innerhalb des Konvexumfangs
Partikel mit glatten Konturen haben Konvexitäts- / Schärfewerte nahe 1, während Partikel mit rauen Konturen oder agglomerierten primären Partikeln niedrigere Werte aufweisen.

Bitte aktivieren Sie das Feld „Ich möchte den Newsletter mit Seminarinformationen usw. erhalten“.
Mehr Informationen zur Partikelgrößenverteilung
Dieser Artikel ist eine umfassende Zusammenfassung eines beliebten Whitepapers, das im Download-Ranking unseres Blogs ganz weit oben steht: „Der grundlegende Leitfaden zur Partikelcharakterisierung“.
Inhalt des grundlegenden Leitfadens
- Einleitung 3
Was sind Partikel? 3
Warum ist die Messung von Partikeleigenschaften wichtig? 3
Welche Messungen sind wichtig? 4
Partikeleigenschaften 5
Partikelgröße 5
Partikelgrößenverteilung 6
Partikelform 11
Technologien zur Partikelcharakterisierung 14
Welche Technologien zur Partikelcharakterisierung sind notwendig? 14
Probennahme 14
Probenverteilung 15
Technologie: Laserbeugungs-Partikelgrößenmessung 17
Technologie: Dynamische Lichtstreuung (DLS) 19
Prinzip 19
Technologie: Automatische Bildverarbeitung (Partikelbildgebung) 21
Technologie: Elektrophoretische Lichtstreuung (ELS) 23
Partikelbezogene Eigenschaften: Rheologie 24
Referenzen 25
Seminarvideo zur laserbeugungsbasierten Messung der Partikeldurchmesser-Verteilung
Die Videos enthalten Audioerklärungen von unseren Spezialisten.
Es gibt insgesamt 11 Sitzungen, die jeweils nur wenige Minuten bis maximal 15 Minuten dauern.

Inhalt des Partikelmess-Seminars
1. Definition der Partikelgrößenverteilung
2. Messgenauigkeit und die richtige Wahl des Messgeräts
3. Prinzip der Laserbeugungs- und Streumessung
4. Aufbau des laserbeugungsbasierten Geräts (Mastersizer 3000)
5. Spezielle Geräte für Sprayanwendungen
6. Prozessanalytegeräte zur Partikelgrößenverteilung
7. Optimierung der laserbeugungsbasierten Messparameter
8. Überlegungen beim Wechsel des laserbeugungsbasierten Geräts
9. Umgang mit „seltsamen Daten“, die häufig bei der Laserbeugung auftreten
10. Zusammenfassung der Merkmale der laserbeugungsbasierten Messung
Einführung in Partikelgrößenverteilungs-Analyzer

1, Laserbeugungsgerät Mastersizer
Der Mastersizer ist ein Partikelgrößenmessgerät, das durch seine Fähigkeit, 10.000 Datensätze pro Sekunde zu erfassen, höchste Präzision und Reproduzierbarkeit bietet.
Der Mastersizer löst Probleme, die häufig bei der Messung auftreten!
Problem 1: Die Einstellung und Optimierung der Methode (Testverfahren) ist schwierig
Problem 2: Unterschiedliche Geräte- oder Herstellermodelle machen Probleme
Problem 3: Erfahrungsunterschiede wirken sich auf die Messergebnisse aus
Problem 4: Messsicherheit gewährleisten
2, Zeta-Sizer Zeta Potenzial Messgerät

Die Zeta-Sizer-Serie ist ein Analysesystem für Nanopartikel und Polymere, das Partikelgrößenmessung, Zeta-Potenzialmessung und Molekulargewichtsbestimmung in einem Gerät ermöglicht.
Der Zeta-Sizer löst häufig auftretende Probleme bei der Zeta-Potenzialmessung!
Problem 1: Bei hoher Salzkonzentration kann das Zeta-Potenzial nicht genau gemessen werden
Problem 2: Zielpartikelgrößen sind nahe am Leistungsgrenzwert des Instruments
Problem 3: Unsicherheit, ob die erhaltenen Ergebnisse verlässlich sind
Problem 4: Limitierte Auflösung
Problem 5: Schnelle Veränderung der Probe und lagende Messung
Problem 6: Unbekannte Partikelkonzentration
Kontakt
Dieser Artikel wurde möglicherweise automatisch übersetzt
{{ product.product_name }}
{{ product.product_strapline }}
{{ product.product_lede }}