During the last 50 years, the cement industry has been relying on X-ray fluorescence spectrometry for the quantification of the elemental composition of cement industry-related materials. Sample preparation by pressed powders was commonly used during the first decades, but for the last 20 years borate fusion saw an important increase in popularity and both the pressed powders and the borate fusion are now accepted for those analysis[1]. The 21st century saw a significant change in the management of the production of cement through the increase of production of cements with alternative raw materials and additives involving secondary fuels. This complication of the cement matrix and the use of spectrometer calibration reference materials from various sources in the world make the use of pressed powder more complicated due to the difficulty to matrix match the calibration standards and the production samples from the plant. In this new reality, the use of the borate fusion preparation allows for more accurate analysis and requires

less calibration curves because this technique removes particle size and mineralogy effects[1, 2]. For those reasons but also to facilitate the lab work, a single fusion method for the preparation of all cements, all process materials and a very wide range of raw materials is desirable, when combined with a wavelength-dispersive X-ray fluorescence (WDXRF), to

allow compliance with the ASTM C 114 and ISO/DIS 29581-2 specifications of precision and accuracy

Login

 
  You need to provide a valid email address which will also be your username for the site.

Not registered yet?

Sign up for free today. By registering you will have free access to exclusive content including

  • Webinars, presentations and videos
  • Application notes, technical notes, articles, white papers and software downloads

And in addition you will receive

  • Our regular eNews including the latest news, education, events and offers from Malvern