氫可以成為潔淨能源載體,減少各類領域對化石燃料的依賴,並為脫碳提供強大助力。在運輸領域中,氫燃料電池能為車輛提供動力,且水蒸氣是唯一的副產品,因此無論是輕型還是重型運輸,氫燃料電池都是理想選擇。鋼材生產與化學品製造等工業流程如使用綠氫,也可有效減少碳足跡。
此外,氫亦可用於為建築物供應暖氣和發電,進而打造有別於傳統方法的低碳替代方案。將氫整合至這些領域,就能減少碳排放,並為朝向永續低碳未來的轉型提供支援。
Explore
瞭解氫催化劑
氫催化劑是提高氫氣生產、儲存和使用效率的重要材料,更在永續能源經濟轉型中起到關鍵作用。許多程序都會使用氫催化劑來製氫,例如電解 (使用鉑和氧化銥)、光催化 (使用二氧化鈦) 和蒸氣重整 (使用鎳基催化劑)。
在燃料電池中,鉑和鎳催化劑會促進電化學反應以利用氫氣發電,而儲存催化劑則可協助有效吸附和脫附金屬氫化物等材料中的氫氣。此外,氫催化劑也是製氨和加氫裂解等工業製程中不可或缺的一環,有利於產生更潔淨的能源及進行創新工業應用。
永續的氫經濟
氫經濟的關鍵要素包括:
- 製氫
- 蒸氣甲烷重整 (SMR) 是將甲烷氧化成氫氣和 CO2 以生產氫的傳統方法。更潔淨的製氫方法是使用電解槽,運用電力將水分解為氫氣和氧氣。若電力來自太陽能和風能等再生能源,則透過此方式產出的氫氣就稱為「綠氫」。
- 儲氫
- 氫氣的儲存方式包括壓縮氫氣與液態氫。或者,也可藉由金屬氫化物的化學形式儲存。
- 用氫
- 氫氣可用於發電、可加以燃燒而產生熱能,也可做為還原劑,以從氧化物製造金屬。一般用於氫能電動車的燃料電池就是透過氫氣氧化來產生電力。
製造燃料電池與電解槽

氫催化劑的粒徑解決方案

催化劑漿料的配方十分複雜,其中包含由 Nafion 離子聚合物結合各種粒子及其團聚物而成的碳黑,以及將碳黑做為載體的鉑催化劑,示意圖如右。
這需要運用一系列不同的粒徑測量技術才能進行特性分析。我們運用 X 光繞射 (XRD)、雷射繞射 (LD) 以及動態光散射 (DLS) 技術來分析位於不同大小範圍的粒子。
影像:催化劑漿料配方中的粒子示意圖。
探索我們的鉑催化劑分析解決方案

碳黑
可使用我們的動態光散射系統 Zetasizer 來判斷催化劑漿料中的碳黑大小。
我們的專利非侵入性背向散射 (NIBS) 技術可根據不透明度和濃度等樣本特性,自動改變路徑長度。也就是說,我們的技術能測量催化劑漿料等高濃度且不透明的漿體,為各種濃度和尺寸大小提供準確的粒俓資料,同時保持一致的結果。
此外,Zetasizer 還可測量 Zeta 電位或粒子上的電荷。高電荷粒子會保持分散狀態,而低電荷粒子則傾向於黏聚在一起。
影像:使用 NIBS 和 Zetasizer pro 對催化劑漿料重複進行六次 DLS 測量,顯示分散碳粒子的平均大小為 210 nm。

Mastersizer 3000+ 提供了另一個測量碳粒子粒徑的方法,特別是當樣本中存在大於 1 µm 的團聚物時更是適用。
Mastersizer 3000+ 採用雷射繞射技術,由於具備高精確度、可重複性與可靠性,因此獲公認為粒徑測量領域中的產業標竿。
影像:使用 Mastersizer 3000 雷射繞射儀器測量 Vulcan XC-72 碳黑載體粒子上三種不同鉑負載程度 (20%、40%、60%) 的鉑/碳催化劑粉末樣本粒徑。
探索我們的碳黑分析解決方案
氫催化劑的元素成分解決方案

探索我們的元素成分解決方案
即時元素成分分析

Epsilon Xline
連續捲對捲製程線上控制
如要研究催化劑塗層膜的元素成分均質性,Epsilon Xline 正是完美的解決方案。
此工具結合我們先進的 Epsilon 4 技術與即時功能,可為超音波噴霧塗佈及捲對捲塗佈製程提供即時材料監控與最新的製程控制功能。此類定期分析代表可針對材料成分和裝載持續進行最佳化,有助於大幅減少不符規格的成品,並且最大化成本效益。
除了精確的製程控制,彈性靈活的 Epsilon Xline 也適用於各種表面和催化材料。
Renewable and low-carbon Hydrogen
Renewable and low-carbon Hydrogen to contribute over 20% of global carbon abatement by 2050.
Micromeritics products will play a key role in the development of adsorbents, membranes, and catalysts, which are critical for technology development. Our instruments provide world-leading technology for the characterization of particles, powders, and porous materials.
Surface Area Surface area by gas adsorption, including BET surface area analysis. |
Porosity Pore size, volume, and distribution by gas adsorption and mercury porosimetry. |
Density Absolute density of solids, powders, and slurries by gas pycnometry. Automated envelope density of irregular solids and compressed bulk density (T.A.P). |
Powder Flow Shear and dynamic measurements of powder rheology and particle interactions. |
Activity Catalyst activity, including chemisorption, temperature-programmed reactions, and lab-scale reactor systems. |
Hydrogen will play a key role in decarbonization as it supports 60% of the applications with greenhouse gas (GHG) emissions. |
Adsorbents, membranes, and catalysts
- Optimize adsorption/desorption cycle to increase productivity and reduce cost
- Determine the CO2 that can be adsorbed
- Maximize activity and lifetime of the catalyst
- Measure membrane pore size to optimize transport and reactivity
Applications:
- Steam reforming
- Biomass
- Green electrolysis
Adsorbents and catalysts
- Develop materials with high H2 adsorption
- Determine critical parameters to scale adsorbents
- Understand the efficiency and lifetime of catalysts
- Maximize catalytic activity
Applications:
- Storage: MOFs, Zeolites, Carbon
- Synthesis CH3OH, NH3, HCOOH
- Hydrogenation LOHC, metal hydrides
Adsorbents, membranes, and catalysts
- Optimize pore size of fuel cell membranes
- Use chemisorption to determine the catalyst active area
- Adsorb/Desorb cycle optimization to minimize costs
- Study fuel cell efficiencies
Applications:
- Fuel cells
- Ammonia, fertilizer, fuel
- Chemical processes
Micromeritics offers the most comprehensive portfolio of high-performance instruments to characterize the materials required to achieve a more sustainable future.
Find out how each product can advance your catalyst, adsorbent and membrane development and analysis:
Catalyst instruments
- AutoChem III
Utilizes dynamic techniques to characterize the materials active sites
- Optimize adsorption and dissociation of H2/O2 on electrolysis electrodes
- Understand if desorption occurs near reaction conditions
- Measure and quantify acid or base sites to optimize reactivity and selectivity
- 3Flex
Offers physisorption and static/dynamic chemisorption for characterizing catalysts and their supports
- Understand multi-metal catalysts’ effects on activation and adsorption of active species
- Select catalysts providing a higher turnover frequency
- Investigate influence of heat of adsorption
- ICCS Catalyst Characterization
Provides in-situ characterization to understand the effect of reaction conditions on the catalyst
- Understand changes in performance over extended periods
- Determine the deactivation mechanism to maximize the catalysts’ lifetime
- Monitor changes in active sites, oxidative state, metal dispersion, and desorption behavior
- Flow Reactor (FR)
Benchtop reactor studies to understand and optimize catalyst performance
- Understand reaction kinetics to optimize operating parameters and conversion
- Measure selectivity, efficiency, and lifetime of catalysts
- Study of reactions requiring a liquid/gas separator at pressure and temperature
Solutions for catalyst development
Adsorbent and membrane instruments
- 3Flex
High-performance adsorption analyzer for measuring surface area, pore size and volume
- Understand adsorbent regeneration cost and best operating parameters
- Optimize pore size to maximize the uptake capacity of the adsorbent
- Predict the selectivity of a gas mixture using Ideal Adsorption Solution Theory (IAST)
- BreakThrough Analyzer
Precise characterization of adsorbent or membrane under process-relevant conditions
- Lifetime and cycling studies to choose the best adsorbent technology
- Measure kinetic performance of adsorbents
- Understand humidity effects for CO2/N2 competitive adsorption
- AutoPore V
Mercury porosimetry analysis permits detailed porous material characterization
- Characterize pore size to understand diffusion into adsorption sites
- Study and optimize pore size distribution, total pore volume, percent porosity, particle size, and total surface area
- Ensure a reproducible adsorbent manufacturing process
- HPVA II
Static volumetric method to obtain high-pressure adsorption and desorption isotherms
- Investigate the quantity of H2 or CO2 adsorbed
- Increase productivity and reduce cost by optimizing the adsorption/ desorption cycle
- Study candidate materials and CO2 storage sites
Solutions for adsorbent and membrane development
進一步瞭解氫催化劑分析
