Date recorded: October 01 2015
Duration: 40 minutes 39 seconds
Differential scanning calorimetry (DSC) is a well-established technique for biomolecular stability studies. The technique is based on forced thermal denaturation of the biomolecules. It is extensively used for characterization of protein stability, comparisons between native and mutant variants of proteins, for optimization of buffer conditions, and for confirmation of molecular interactions including quantitative determination of affinities. DSC is also one of the main thermal stability assays used in biopharmaceutical development for construct selection, manufacturability assessment, optimization of bioprocess, biocomparability analysis and pre/formulation studies.
The key benefit with DSC as compared to other thermal stability assays is that it is based on heat measurements and therefore allows for the direct characterization of thermal unfolding of biomolecules without the need for extrinsic or intrinsic fluorescence reporter. Furthermore, the lack of spectroscopic readings means that the samples do not have to be optically clear. In addition, the characterization is not limited to the unfolding transition temperature (Tm).
DSC provides multiple descriptors of unfolding transition which facilitates selection of the best construct/condition and allows to fingerprint higher order structure and to compare stability of individual domains. DSC can also provide data on the forces involved in folding of biomolecules and the mechanisms by which they unfold. This webinar presents results of the case studies demonstrating the advantages of DSC for characterization and optimization of protein stability, comparability analysis, elucidation of buffer-dependent protein oligomerization and unfolding mechanism. The benefits of DSC as compared to other thermal stability assays are discussed.